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2. BELTRAMI DIFFERENTIAL EQUATION IN PLANE POTENTIAL THEORY

2.1 Potential flow in 2D physical space

We consider steady, two-dimensional, isentropic and irrotational flow of a polytropic, inviscid
gas. The basic equations of motion are then determined by

the continuity equation and irrotationality, respectively, with ρ the density and the velocity
vector in physical space. Isentropic gas properties determine velocity q, sonic speed a and den-
sity ρ as functions of the Mach number M, for given stagnation conditions, denoted here with
subscript 0:

With (1a, 1b) we may define a velocity potential Φ and a stream function Ψ, with their gradients
in the two directions x, y of 2D physical space equal to the velocity components u, v in these
directions:

where is the flow angle. The system (3) is a generalization of the Cauchy-Riemann equations,
so-called Beltrami equations. Elimination of Ψ or Φ yields Poisson equations for Φ or Ψ, re-
spectively:
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with ρ a function (2) of M, and therefore

the system (3) and the equations (4) are nonlinear. Furthermore, the system is of elliptic type if
M < 1, and of hyperbolic type if M > 1, with a parabolic type dividing line M = 1, the sonic line.

2.2 Potential flow in the Hodograph plane

The aforementioned nonlinearity of the basic system (3) may be avoided if a new pair of inde-
pendent variables is introduced to replace physical coordinates x, y. These variables are suitable
functions of the velocity components, they are called hodograph variables. A special pair of
such variables is consisting of the flow angle, and a function of the Mach number, known also
as the Prandtl-Meyer turning angle

with a* defining the critical velocity.

The coefficient

will also be used in the following system. The new variables , may either be used directly
to define a hodograph plane wherein the basic Beltrami system becomes linear:

or and more generally are functions of a computational working plane obtained from the
basic , hodograph by conformal (for ) or characteristic (for ) mapping. For subso-
nic flow including sonic conditions, ( , ), conformal mapping defines a working plane
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,

with the mapping function E. The basic system in  becomes then

with

Equations (10) form, as (8), a linear Beltrami system, while (3) is nonlinear. Elimination of Ψ
or Φ yields linear Poisson equations for Φ or Ψ, respectively:

As we will see later, boundary value problems for practically interesting solutions of the basic
system (8) may be significantly simpler to solve in a working plane with (10) rather than in
the original  where (8) is valid.

The same is true, in principle, for the supersonic part of the flow. Here we introduce characteri-
stic variables with a suitable mapping function H,

yielding the system valid in the  plane

or equivalently,

which is the basic relation for the method of characteristics to integrate the flow equations (8)
for M > 1.
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2.3 Near sonic flow in the hodograph plane
A given solution of (8) allows the integration of physical coordinates x, y with the formula

For flows with only small perturbations to a sonic parallel flow,

we may eliminate Φ and Ψ so that a basic system for the physical plane coordinates x, y is ob-
tained. Furthermore, introduction of a similarity parameter allows the use of reduced variab-
les for place (x, y) and state (q, ) which contain the well-known Transonic similarity laws

with positive S for and negative S for , thus S= 0 equivalent to sonic flow conditions.

The basic system (8) then yields a corresponding Beltrami system for the reduced physical plane
Variables X, Y in the reduced variables of state working plane S, T:

Linearity again, and the simple structure of the coefficient gave rise to extensive studies of this
system and the structure of its solutions. It is equivalent to the well known Tricomi equation for
near sonic flow3, Also, it is a special case of Generatized Axisymmetric Potential Theory4. Nu-
merous particular solutions were described5 and used for better understanding of experimentally
observed transonic flow phenomena at a time, when computers and numerical methods were
still not available. An analytical example for transonic airfoil flow will illustrate the possibilities
of this approach.
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2.4 Electric Potential in a Plane Conductor
Let us consider the distribution of electric current in a three-dimensional conductor. Let E be the
electrical potential and (x, y, z) be the conductivity. The current intensity, di, which crosses a
surface element, dS is given by Ohm's law:

where n is the surface normal to dS. In the case of a two-dimensional (x, y) conductor, variable
conductivity can be simulated by constant conductivity but variable thickness distribution of the
conductor, h(x,y). The current density, di, crossing the surface element, dS, described by the
perpendiculars along the arc, ds, in the x, y plane, is

With the assumption of conservation within the conductor,

a partial differential equation is obtained then for E:

There exists, moreover, a current function, W, which is associated to the electrical potential by
the Beltrami system

Having described flows by different forms of Beltrami equations earlier, we note here the ana-
logy between subsonic gas flow and electric current variables: there are obviously two types of
analogy6,7, called Rheoelectric Analogies A and B:
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Analogy B

As we stated earlier, the existence of these analogies led to many applications, mainly to solve
system (3) for complicated flow boundary conditions and most effectively for the incompressib-
le limit at a time when computers where not operational or available. From an experi-
mental standpoint, the simpler operation is the measurement of the electrical potential, E.
Analogy A thus gives, with measured electrical potential, a distribution of Φ in the analog wor-
king plane (x, y), ( ) or (s, t) in (3), (8) or (10), respectively, while analogy B provides a so-
lution of the Ψ-distribution, for a given and analogously solved boundary value problem in the
physical or hodograph plane.

It is the purpose of this paper to illustrate some applications of the outlined analogies to transo-
nic flow problems, in particular airfoil design. At a time when the analogy already was used for
numerous problems8, transonic applications seemed impossible due to difficulties near the sonic
flow conditions, as will be illustrated later.

The following chapter will outline a new idea, which led to fruitful use of the analogy in tran-
sonic airfoil design. At the same time, however, digital computers became widely used and at
first the use of analog computation of purely elliptic (subsonic flow) problems was more or less
terminated. But transonic computational aerodynamics remained a problem so that at least few
researchers considered it worth to investigate the use of analog computation. Results shown in
this paper stem from such research.

Finally, however, rapid progress in numerical methods - also in transonic aerodynamics invited
to introduce some of the ideas developed with the analogy into digital computation and thus ob-
tain solutions now much more economically. Results of these methods are presented here, too,
and it is the purpose of this paper to present a recent effective numerical approach to transonic
airfoil design as a logical step to be taken after some very educational experiments with rheo-
electric analogy.
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