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2. BELTRAMI DIFFERENTIAL EQUATION IN PLANE POTENTIAL THEORY

2.1 Potential flow in 2D physical space

We consider steady, two-dimensional, isentropic and irrotational flow of a polytropic, inviscid
gas. The basic equations of motion are then determined by
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the continuity equation and irrotationality, respectively, with p the density and v the velocity
vector in physical space. | sentropic gas properties determine velocity ¢, sonic speed a and den-
sity p as functions of the Mach number M, for given stagnation conditions, denoted here with
subscript O:
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With (1a, 1b) we may define avelocity potential ® and a stream function W, with their gradients
in the two directions x, y of 2D physical space equal to the velocity components u, v in these
directions:

(px:—p— y:u:qcosﬁ
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®, = —%Wx: v= ¢sind

where 9 isthe flow angle. The system (3) isageneralization of the Cauchy-Riemann equations,
so-called Beltrami equations. Elimination of W or @ yields Poisson equations for @ or W, re-
spectively:
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page 2.1



H. Sobieczky: Related Analytical, Analog and Numerical Methods in Transonic Airfoil Design, AIAA-79-1556
Chapter 2

with p afunction (2) of M, and therefore

p= p(q/a)= p(@; +@)) (5)

the system (3) and the equations (4) are nonlinear. Furthermore, the system is of elliptic typeif
M < 1, and of hyperbolictypeif M > 1, with aparabolic typedividing lineM = 1, the sonicline.

2.2 Potential flow in the Hodograph plane

The aforementioned nonlinearity of the basic system (3) may be avoided if a new pair of inde-
pendent variablesisintroduced to replace physical coordinates x, y. These variables are suitable
functions of the velocity components, they are called hodograph variables. A specia pair of
such variablesis consisting of the flow angle, 8 and afunction of the Mach number, known also
as the Prandtl-Meyer turning angle

q
v= IA/|M2-1|”_’q‘! (6)
al

with @ defining the critical velocity.
The coefficient

K= K(M(v))= %’JIM2—1| (7

will also be used in the following system. The new variables v, 8 may either be used directly
to define a hodograph plane wherein the basic Beltrami system becomes linear:

0,= K(0)¥s (V20,M21)
¢,= —K(v)¥ (L0, M<1) (8)
Py= K()¥,

or v and 9 more generally are functions of a computational working plane obtained from the
basic v, 9 hodograph by conformal (for » < 1) or characteristic (for & = 1) mapping. For subso-
nic flow including sonic conditions, (<1, v<o), conforma mapping defines aworking plane
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Z,
L= U +id ©2)
i= s+it= E(Z,) (9b)

with the mapping function E. The basic system in ¢ becomes then

o= —K(u(s, 1))¥, (10)

Q= K(u(s, 1))¥,
with

V(s n= Re(E™(2))

9. 0= Im(E" (1))

(11)

Equations (10) form, as (8), alinear Beltrami system, while (3) is nonlinear. Elimination of W
or ® yields linear Poisson equations for ® or W, respectively:

K, K,
Ot 0= Ot O, (122)
K K, 12b
l'les-l-l'IJz‘t: _ESLIJS_ELPI‘ ( )

Aswe will see later, boundary value problems for practically interesting solutions of the basic
system (8) may be significantly simpler to solve in aworking plane ¢ with (10) rather than in
theoriginal ¢, where (8) isvalid.

The sameistrue, in principle, for the supersonic part of the flow. Here we introduce characteri-
stic variables with a suitable mapping function H,

&= H(3 +v)
n=H(®-v)

(13)

yielding the system valid in the g,n plane

@:= K(u(&,n))Y¥e
(pr]: —K(U(E, n))LIJr]

(14)

or equivalently,

d_lP -1
do

I
I+
~

(15)

&, N = const

which is the basic relation for the method of characteristics to integrate the flow equations (8)
forM > 1.
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2.3 Near sonic flow in the hodograph plane
A given solution of (8) alows the integration of physical coordinates x, y with the formula

dz= dx +idy= " (do+ i%)dtu)/q (16)

For flows with only small perturbations to a sonic parallel flow,

(M-1)«l1 (17)
D «T1/2

we may eliminate ® and W so that a basic system for the physical plane coordinates x, y is ob-
tained. Furthermore, introduction of asimilarity parameter ¢ allows the use of reduced variab-
lesfor place (x, y) and state (g, ¢ ) which contain the well-known Transonic similarity laws

1 -1 3/2
S=+23 o (y+1)1/2a 1_%‘
a
=0 ' ®
(18)
X = @/al

14l
_ -1 3
=032 (y+1)]" T ow/ab

with positive Sfor 4 > «0 and negative Sfor 4 < <0, thus S= 0 equivalent to sonic flow conditions.

The basic system (8) then yields acorresponding Beltrami system for the reduced physical plane
Variables X, Y in the reduced variables of state working plane S, T:

xg= sy, (S20,M=1)
Xs= —|Sl/3|YT (S<0,M<1) (19)
XT: |S1/3|YS

Linearity again, and the simple structure of the coefficient gave rise to extensive studies of this
system and the structure of its solutions. It is equivalent to the well known Tricomi equation for
near sonic flow?, Also, itis aspecial case of Generatized Axisymmetric Potential Theory*. Nu-
merous particular solutionswere described® and used for better understanding of experimentally
observed transonic flow phenomena at a time, when computers and numerical methods were
still not available. An analytical examplefor transonic airfoil flow will illustrate the possibilities

of this approach.
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2.4 Electric Potential in a Plane Conductor

L et usconsider the distribution of electric current in athree-dimensional conductor. Let E bethe
electrical potential and A (X, Y, ) be the conductivity. The current intensity, di, which crosses a
surface element, dSis given by Ohm's law:

di= 2%E 45 (20)
dn

where n isthe surface normal to dS. In the case of atwo-dimensional (X, y) conductor, variable
conductivity can be simulated by constant conductivity but variable thickness distribution of the
conductor, h(x,y). The current density, di, crossing the surface element, dS, described by the
perpendiculars along the arc, ds, inthe x, y plane, is

dE
= — —_— (21)
di= =\ [h(x, y)dnds
With the assumption of conservation within the conductor,
div(hgradE)= 0 (22)
apartia differential equation is obtained then for E:

h,  h
=_Z2g -2 23
En+E,=-7E-JE, (23)

There exists, moreover, a current function, W, which is associated to the electrical potential by
the Beltrami system

(24)

X

1
E=—W
Yy )\h

Having described flows by different forms of Beltrami equations earlier, we note here the ana-
logy between subsonic gas flow and electric current variables: there are obviously two types of
analogy®’, called Rheoelectric Analogies A and B:

Analogy A

(25)
p/ Po Equ(3)

K Equ(8), (10)
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Analogy B
Q=W
Y=F
. (26)
Ny = (p/Py) Equ(3)
K Equ(8), (10)

Aswe stated earlier, the existence of these analogies led to many applications, mainly to solve
system (3) for complicated flow boundary conditions and most effectively for theincompressib-
le limit p = p, a atime when computers where not operational or available. From an experi-
mental standpoint, the simpler operation is the measurement of the electrical potential, E.
Analogy A thus gives, with measured electrical potential, adistribution of @ in the analog wor-
king plane (X, y), (v/9) or (s, t) in (3), (8) or (10), respectively, while analogy B provides a so-
lution of the W-distribution, for a given and analogously solved boundary value problem in the
physical or hodograph plane.

It isthe purpose of this paper to illustrate some applications of the outlined anal ogies to transo-
nic flow problems, in particular airfoil design. At atime when the analogy already was used for
numerous probl ems®, transonic applications seemed impossi ble due to difficulties near the sonic
flow conditions, aswill beillustrated | ater.

The following chapter will outline a new idea, which led to fruitful use of the analogy in tran-
sonic airfoil design. At the same time, however, digital computers became widely used and at
first the use of analog computation of purely elliptic (subsonic flow) problemswas more or less
terminated. But transonic computational aerodynamics remained a problem so that at least few
researchers considered it worth to investigate the use of analog computation. Results shown in
this paper stem from such research.

Finaly, however, rapid progress in numerical methods - aso in transonic aerodynamics invited
to introduce some of the ideas devel oped with the analogy into digital computation and thus ob-
tain solutions now much more economically. Results of these methods are presented here, too,
and it is the purpose of this paper to present a recent effective numerical approach to transonic
airfoil design as alogical step to be taken after some very educational experiments with rheo-
electric analogy.
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