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Abstract
This presentation reviews, illustrates and expands an applied method to compute compressible flow pat-

terns in three-dimensional space which are suitable for flight vehicle configuration design.
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1 Introduction

Inverse procedures to obtain desirable results in engineering design have originally been defined what
today is called the “true inverse” approach: The mathematical background of a problem in engineering
mechanics is reformulated, i. e. its system of equations is modified (“inverted”) to allow using as input
the desired resulting performance in detail. For aerodynamics this means application of accumulated
practical knowledge, that certain pressure distributions in flow fields not only result in target forces (e.
g. lift on a wing) but also more detailed in the behavior in off-design operating conditions, where the
target function should have some controlled, if necessary, deviation of the optimum design behavior.
While we nowadays have certain successful “true inverse” reformulations in the fluid mechanic basic
equations, more complex applications claim for a wider definition of targets in design, frequently
becoming necessary because of multidisciplinary considerations of “what is optimum performance in
the practical world?”. Inverse tools are therfore more and more replaced by repeated “direct approach”
try-and-err computations to arrive at a target function, which is of course more costly but with increased
computer power this seems to matter less. Optimization strategies to speed up the process for arriving at
a given target, say, pressure distribution on a wing to remain in aerodynamics, are therefore becoming
more important tools which seem to blend better into any multidisciplinary work with model equations
from, say, structural mechanics, thermomechanics, acoustics, etc.

What is therefore left of the values of true inverse methods, at least in design aerodynamics? Certainly a
better understanding of phenomena is developed by the engineer, but also, if used in combination with
optimization strategies, an accelerated arrival at desirable results seems likely, because of a problem -
oriented definition of free parameters allowed to adjust for optima, and avoiding optimization runs
searching in parameter spaces where no solution can be existing.

Mathematical models of compressible flow describe the phenomena and practical consequences occur-
ring in high speed aerodynamics. Main efforts need to be taken to shape flight vehicles and turboma-
chinery components to avoid strong shock waves because of, first, their causing of wave drag and,
second, interacting with viscous effects near the surface decreasing lift forces besides adding further
friction drag. This way, the inviscid flow phenomenon of shock waves is causing dramatic decrease of
aerodynamic efficiency defined by the ratio of lift-over-drag.

In this contribution a hitherto not used combination of inviscid flow modelling by the Euler equations of
fluid motion with “true inverse” reformulation of boundary value problems is given for some transonic
and supersonic applications, to help learning about sensitivities of shape parameterization, which sub-
sequently should support computational optimization methods in aerodynamics.

2 Local high speed flow patterns of practical interest

Unlike flows with locally subsonic Mach numbers, where each loca-
tion in the flow field is influenced by all other locations and flow
parameters there, supersonic flows have bounded regions of influ-
ence and dependence: If a given flow example therefore is altered
slightly at a certain point A (Fig. 1) on the flow boundary, changes in
the flow will be felt only within a domain bounded by a Mach cone.
For stronger alterations in A and downstream of it, the Mach cone
will become a shock wave, with stronger changes in the flow field
but unchanged flow upstream of the shock wave. This is basic
knowledge in supersonic fluid mechanics, in the following some
non-trivial applications to transonic and supersonic aerodynamics
will be made.

Figure 1: Region of depen-
dence downstream of point A
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Figure 2: Flow domain visualization for aerodynamic configurations:
CFD results for an SST wing-body configuration in supersonic flow (M = 2.4), with shock waves
emanating from body tip and from wing root apex (a), and for a wing in transonic flow (M = 0.82),
with supersonic bubble embedded in subsonic flow and cut open to show iso-Mach fringes (b).

2.1 Supersonic Flow

The sketch Fig. 1 occurs in real flows past supersonic aircraft at various locations on the configuration
surface: Figure 2a shows visualization of the results of computational simulation with an Euler CFD
code. A system of shock waves displayed here for shock strength above a certain threshold, revealing
that a bow wave is created by the tip but also another shock wave emanates from the wing root at the
body. Challenging design tasks exist for such aircraft: Shock formation at the wing root can be reduced
by a filleted integration of wing and body and a careful tailoring of the cross section area of fuselage
plus wing. An inverse design approach would be the geometrical description of a shock system with
desirable wave drag and from it find the flow field plus the surface geometry compatible with this shock
system. For this example, the approach would be mathematically ill-posed but there are supersonic
applications shown in the following chapters, which very well allow this inverse approach without run-
ning into numerical difficulties stemming from ill-posedness.

Before showing such applications, the more difficult example of transonic flow will be illustrated
because it sparked ideas how to treat local flow domains bounded by surfaces with known flow property
mathematically.

2.2 Transonic Flow

In transonic flow past a configuration both supersonic flow (M > 1) and subsonic flow (M < 1) occurs,
separated by a surface with smooth transition of M from <1 to >1. Also, non-smooth transition from M

> 1 back to subsonic velocity occurs if the bounding surface is a shock wave. Fig. 2b shows the visual-
ization of a computed local supersonic domain on a wing in flow with high subsonic Mach number: The
flow accelerates smoothly to supersonic velocity but is returning to subsonic velocity passing a recom-
pression shock (steep slope of the visualized domain with M > 1). For a given flight Mach number,
occurrence and strength of this shock is solely dependent of the body shape, for flight Mach numbers
not too close to unity there is a chance to suppress the shock and return with gradual deceleration to
subsonic flow. It is a primary task of design aerodynamics to develop systematical methods of shape
generation with shock-free flow quality or at least with shocks of a controlled strength. In the following,
the author’s inverse methods, with a more recent application of Euler CFD, will be outlined.



Helmut Sobieczk

3 Inverse Marching

Transonic flows are the first examples to illustrate the concept of inverse design within a limited domain
of the flow field. The task is to reshape the local supersonic flow domain so that it will exhibit a shock-
free recompression. A systematic method to achieve this goal for 2D (airfoil) flow is a transformation of
the basic model equations into the variables of state u, v (the velocity components in 2D space, also
called the Hodograph working plane). The model equations then become linear and the boundary value
problem for a typical transonic airfoil flow suggests the new procedure of marching of a given sonic
flow conditions locus.

3.1 Choice of the Independent Variables

This procedure is illustrated in Ref. [1] in detail, with several applications to shock-free airfoil flow.
The point with shock-free flows is that they are isentropic, hence allow for the simplification of Euler
model equations to the compressible flow potential equation: for a long time the most paractical form of
applied problems model equations to be solved by then smaller computers. Figure 3 shows the principle
of solving the boundary value problem in the hodograph plane: We define an elliptic boundary value
problem E in the subsonic part (M < 1) of this plane and solve the linear Poisson equation for this
domain E. Practically we do this by first extending the elliptic problem into the supersonic part M > 1
and evaluating the solution along the (sonic locus) AB. We then solve a hyperbolic problem with initial
values along AB taken from the elliptic solution and put together the valid elliptic solution in M < 1
with the newly computed hyperbolic solution representing supersonic flow within a local domain.
Without going into the details here we note the fact, tffiatitous extension of the subsonic problem
delivered data for a sonic surface and initial values for a hyperbolic computation, marching away from
the sonic locus AB and obtaining a field H with a boundary which connects to the elliptic boundary
smoothly but is (slightly) different to the initial continuation. We note that the marching direction for
the hyperbolic procedure is not in the streamwise but in the increasing Mach number direction, with
ending at a resulting boundary which will be transformed back to the physical plane as a surface com-
patible with shock-free flow.

In the following we learn from this two-step procedure of steeing up an elliptic boundary value problem
first and the adding an inverse marching procedure resulting in a flow boundary. The practically inter-
esting fact, that the resulting flow is shock-free, stems from the elliptic first step procedure, pre-condi-
tioning the whole problem to result in a flow without a recompression shock
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Figure 3: Transonic 2D flow mapped to the hodograph plane: Suggesting inverse marching starting
from the sonic locusB
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3.2 Characteristics: Direct and Inverse Marching

What has been simply termed here “Marching procedure”, in practice is a numerical method of charac-
teristics (MOC) which first was developed for the potential flow simplification of isentropic flows

(which are valid for shock-free flows), but later was extended to flows with variable entropy, thus being
an Euler accurate method of characteristics [2]. Figure 4 shows the difference between a direct and an
inverse step of the MOC: in direct approach, we have data in basically an inflow initial corititimd

we compute the triangular region 123 dependent of it. With variable entropy along this initial condition,
but being constant along the streamlines in resulting flow direction, there needs to be an update from
data at point 4, which requires an iterative procedure for this non-linear model equation. It is the basic
element of a direct marching starting from some given upstream flow conditions.

Analysis of the marching in the hodograph plane teaches us that here an inverse marching step is per-
formed, with initial data along, or relatively close to, a streamlif& {n Fig. 4, right hand side) .

Marching is performed now sideways in a crossflow direction, resulting in a flow field 123 compatible
with the predefined data alod&?’. Again the Euler accurate approach will update with entropy con-
vection along streamlin®4.
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Figure 4: Direct and Inverse basic marching element for method of characteristics

3.3 Inverse Euler Method of Characteristics

An efficient Euler MOC computer code for inverse applications has been written by Y. J. Qian, it has
been applied for plane 2D and axisymmetric compressible flows. The extension of the 2D potential
equation concept to axisymmetric flow is represented by the third term in the compatibility relation (1),
entropy convection is modelled by the right hand side term of (1). The characteristic equation (2) stays
the same as for potential flow MOC:

Compatibility relation

sinp_sing dx _ (sinu)3 cotu 1 dxds )
cos(d t) vy cos(d +4) y-1 c dn

+dd + %q cotu —

Characteristic equation

dx = cot(9 + p)dy (2)
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3.4 Integration of the 3D Euler Equations

Applications of the axisymmetric MOC to obtain practical 3D flows will be outlined later, but basically
we still do not have a general purpose fully 3D inverse MOC. Already in the early time of using the
potential equation for transonic flows, ther was an effort to generalize the inverse marching concept to
starting at arbitrary sonic surfaces in 3D space, to compute 3D local supersonic domains as illustrated
in Fig. 2b, with removed or controlled recompression shocks. This was first done for the 3D transonic
small perturbation equation [3]. Fig. 5 shows the given initial data for such approach: a surface z(x,y)
and flow parameters distributed along it. The goal equivalent to inverse marching using the MOC is
computing a flow solution adjacent to this boundary z(x,y) with restrictions accepted concerning the
extension of this solution far into the flow field. From the 2D examples and the hodograph plane we
have learned that smooth analytical quality of the initial data for marching as well as choosing the
increment in velocity (or Mach number) rather than an increteim physical space will avoid the
difficulties stemming from mathematical ill-posedness in 3D marching. However, some successful
computations with usingz for traversing the small distance from the sonic surface down to the (result-
ing) surface data have been performed also.

f
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Figure 5: Surface with initial values distribution for cross-flow marching

For establishing an Euler accurate method of 3D marching we realize that we need the partial deriva-
tives in 3D space of 5 variables of state: pressure, density and the 3 velocity components, represented
here by a vectoff, see equation (3a). We assume to have given boundary conditions along a given sur-
face z(x, y) wheref is distributed according fg(x, y), see Fig. 5. We set up the steady 3D Euler
equations in non-conservative form along this surface, i. e. continuity, 3 momentum equations and the
energy equation, to obtain a system of 5 linear equations (3) for the 15 unknown gradients in 3D
space. Analytic quality of zand athe distributiofy along z yields partial derivatives which are related

to the gradients according to (3b), thus providing the remaining 10 equations for solving the system (3).
This locally linear system allows for establishing a numerical cross flow marching procedure
equivalent to the inverse marching with the inverse MOC.

Aij Efx = BI’ (3)
X = (XY, 2), f=(p,p,u,v,w), Ajj = Ay(D); (3a)
of 0z, of 0z, (3b)
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4 Initial Boundary Value problems

With 2D, axisymmetric and finally fully 3D inverse marching in the local supersonic flow domains of
our practical interest here available, we still ask for axisymmetric and fully 3D Euler accurate numeri-
cal procedures to provide the initial data for this inverse marching. Here we learn from the elliptic part
of the hodograph design procedure briefly mentioned above.

4.1 Fictitious Gas Technique

Thefictitiousextension of the elliptic boundary value problem in the hodograph yielding data along the
sonic locus can be traced back into the 5 Euler equations for 3D flow and shows an interesting physical
interpretation, as depicted system (4):

i) =0,
qMq +0plp=F (4)

pl(y-1)p + plp+ q¥2 =H -T

We see the familiar Euler equations consisting of continuity equation, 3 momentum equation and one
energy equation, with variables p for pressyrégr density and the velocity vectap(u, v, w); H is the

total enthalpy, (the gas equation of state completing this system) . Allowing for a type change as in the
hodograph, we arrive at additional terms at the right hand side of the momentum and energy equation: F
can be interpreted as an imposed ‘gravity’ force field Brislan added energy distribution. This makes

it clear that the initial work with this technique was on the level of the potential equatiofichtious

Gas model therefore was computed allowing the potential formulation. The variablesFiaud])

therefore have to be in a balance analog to potential and kinetic energy in classical mechanics in order
to be conservative in the total potential, see [4].

Using the Euler equations, however, for such modelling does not require the potential balance in princi-
ple anymore: Setting F = 0 and distributings a function of the velocity difference to sonic flow con-
ditions is an effective method to enforce an elliptic continuation with an Euler code for subsequent use
of the MOC or 3D crossflow marching procedure. Physical interpretation of this model as a controlled
energy (heat) removal and re-addition all within the local domain e/jer a*, that is where the veloc-

ity exceeds the critical speed of sound, is at least conceptually interesting: there have been some con-
cepts proposed in other areas of fluid mechanics, using heat addition or cooling of the flow....

4.1.1 Supercritical wings

Applications of this design approach using the 2-step procedure to compute local flow domains with
controlled quality have been obtained by adapting several numerical Euler codes to allow for such
energy and momentum modifications.

Results for transonic (supercritical) airfoils and wings have been obtained by P. Li et al [5] showing
increased aerodynamic efficiency because of wave drag reduction. The next step so far is an implemen-
tation in a time-accurate Navier Stokes CFD code by M. Trenker et al [6] to both design fully viscous
(nearly) shock-free airfoil flows and study unsteady flow control occurring in the cyclic variations on
helicopter rotor blades.

In the following, the method implemented in [5] will be illustrated for both transonic and supersonic
applications. Fig. 6 shows an elliptic unswept wing in transonic flow with an originally strong recom-
pression shock removed.
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Figure 6: Euler CFD simulation of an elliptic wing in transonic flow with fictitious gas model within
sonic surface: modifying the surface with initial conditions for shock-free redesign

4.1.2 Supersonic wings

Following the classical principle of obtaining the flow past a swept wing with infinite aspect ratio by
superimposing 2D airfoil flow with a constant spanwise velocity normal to it suggests an extension of
our design method for 3D wings to arrive at supersonic flows with reduced cross-flow shocks. Vector
addition then simply requires increasing the threshold velocity where the modified energy equation is
used, from sonic conditions to a supersonic Mach number. We know that an infinite swept wing with
subsonic leading edges in supersonic flow will not have a detached bow shock: this has vanished
upstream. 2D recompression shocks on the upper wing surface become cross flow shocks in supersonic
flow. These are successfully removed for superimposition of a shock-free airfoil with a constant span-
wise flow component.

A wing with finite aspect reatio, however, has a bow shock like the configuration Fig. 2a, and the ficti-
tious gas technique might be used starting at a supersonic threshold velocity to favorably influence the
flow field by suppressing cross flow shocks on the wing surface. This is reached, however, not with
completely elliptic fictitious gas: flow conditions between Mach = 1 and the threshold mach number
must behave hyperbolic and hence there is no guarantee that shocks can be romoved completely.

Fig. 7 shows a comparison of wing flows redesigned with the Euler code CFL3D extended to allow for

F. G. extensions, both for transonic and supersonic operating conditions. A diagram shows an analysis
of the fictitious gas law resulting from the modified energy equation in (4), the fat curves apply to the
domains within the locally modified flow domains.

There is a relation between sweep and Mach numhgfdvithese two wing examples with high aspect

ratio: The component M normal to the leading edge of the supersonic swept wing is just equal to the
Mach number N of the unswept transonic wing, which results in approximately the same area of
design madification for both wings on the upper surface.
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Figure 7: Comparison of transonic flow past unswept wing with supersonic flow past swept wing

without crossflow shock: Fictitious gas method to remove recompression and cross flow shocks.

Modified pressure - density relations within fictitious domains. Isofringes indicate areas of design
modification.
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4.2 Given Shock waves

Crossflow shocks on supersonic wings have been removed relatively easily, learning from the swept
wing principle. Shock waves extending far into the flow field, as felt by the sonic boom of an aircraft
flying with supersonic speeds, cannot be influenced by this approach. But bow waves of a limited extent
into space occur with inlet diffuser flows where an oblique ramp shock ideally hits the inlet lip and will
form there a relected system of shocks performing the needed compression of flow for the propulsion
engine. We return, therefore, to the Euler method of characteristics and apply it to plane and axisym-
metric flow fields with plane oblique, conical or curved shocks.

The MOC code written by Y. J. Qian has been used to shed light into some hitherto overseen details of
the classical solution for cone flow in supersonic Mach numbers [7]. An example with a given curved
axisymmetric bow shock in uniform supersonic upstream flow is depicted in Fig. 8. We see an exten-
sion of the charactsristic net of Mach waves beyond the body contour (an axisymmetric shaft ramp
resultingfrom the computation, but physicalbausingthe shock wave to occur in the flow), also show-

ing a limit surface within the flow where the computed characteristics turn back off the axis this way
providing a second branch of the solution. Being situated within the solid boundary, this solution may
have academic value only, but it also tells us that marching in charactsristic variables (equivalent to the
inverse marching direction in hodograph variables mentioned earlier) provides a complete solution,
while a marching procedure in physical space coordinates would cause a breakdown of the code if the
(generally unknown) limit surface is reached.
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Figure 8: Result of inverse method of characteristics: axisymmetric ramp flow represented by given
curved shock wave, stream lines and characteristics in meridional plane.

4.1.1 Waverider Design

Conical flows with oblique shocks have been used to design 3D waveriders in supersonic flow and with
applications to hypersonic flight vehicles. The 3D marching procedure applied to start from a given
arbitrary 3D curved oblique shock surface in uniform high supersonic speed flow has been used to
arrive at 3D ramp surfaces generating such shocks [8], this way providing a 3D generalization of the
waverider principle. K. Jones [9] has computed many examples of waveriders with various shapes, and
made comparisons with Euler analysis using the designed shapes as input verifying the shock waves
which have been used as design input before.
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4.1.2 Osculating Axisymmetric Flows

Final examples mentioned here are 3D generalizations of the waverider design concept by using the
axisymmetric MOC for a high order approximation to compute the local flow field between a shock
wave and the ramp causing it: Assumption of a locally axisymmetric flow within soch flows allows to
compose general waverider shapes with arbitrary shocks and vehicle planform shapes [10], see Fig. 9.
We have termed this concept “Osculating Axisymmetry” - (OA) because of a very economic use of axi-
symmetric flow elements for design of quite general 3D body shapes.

Figure 9: Supersonic waverider configuration computed from given shock wave, illustration of flow
field pressure distribution between shock and surface.

5 Tools for Accelerated Optimization

So far, most of the examples shown here are rather academic studies to arrive at flows with some special
property to be improved, like wave drag reduction of configurations in high speed flow.

As indicated,though, for the OA concept, which is strictly not an exact method compared to the other
examples illustrated, we are interested to make use of theoretical concepts for practical and robust com-
putational tools to be implemented in existing, reliable and fast CFD codes. Practical design goals in
most cases include a suitable parameterization of surface geometries, to provide a link to necessary
structural investigations, model and product definition and the related CAD modelling. For most practi-
cal cases we therefore need to extract knowledge framinversedesign to help making a toolbox for
optimization with automated algorithms and perhaps still including some elements of inverse concepts
by prescribing suitable target functions with a realistic physical background.

The above-mentioned swept wing in supersonic flow has been further refined by applying the kind of
aerodynamic knowledge base as advocated here. After that, a suitable parameterization of the wing
geometry including many variations but also the final design, was input for a numerical optimization
effort [11] using a genetic algorithm: A costly test, but it confirmed our manually found result. From

this we learn about the valuetofie inverseflow example construction.
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6 Conclusion

These final remarks about tool improvement by suitable geometry parameterization ensure the value of
the outlined inverse aerodynamic design methods in a time when iterative approaches to arrive at
improved engineering solutions are the main route of design strategies now, made possible because of
availability of high performance computers and efficient optimization software.

Beyond that, we may embed such concepts in ever-modernized software as comparatively small tool
components to automatically include idealized case studies in the rich variety of candidate configura-
tions for optimization.
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