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3. A TWO-STEP DESIGN PROCEDURE FOR TRANSONIC FLOW

3.1 Elliptic Continuation Principle and local supersonic flow fields
Let us recall the basic equations (8) in the working plane (9). Since the name "Hodograph
plane" is usually associated with the plane defined by the velocity components u, v (3), we will
use here the more general description "Rheograph" for planes like or . With this name it is
intended to relate to the applicability of the rheoelectric analogy for description of two-dimen-
sional gas flow.

Equations (8) are elliptic in the subsonic half plane and hyperbolic in the supersonic
half plane . A transonic flow example with occurrence of mixed subsonic - supersonic
flow, say, a local supersonic region embedded in subsonic flow, with smooth transition of the
flow properties across the sonic line will, therefore, map into contacting regions E and H in Rhe-
ograph see Fig. 1 a, b. We wish to describe quantitatively a solution of system (8) represen-
ting such a flow.

For a subsonic flow example a boundary value problem might be formulated in the physical pla-
ne z as well as in the Rheograph by prescribing Neumann- or Dirichlet-conditions along a
given boundary. For our transonic problem this would require the solution of a nonlinear equa-
tion (3) or (4) of mixed type in z, or solution of the mixed type linear system (8) in .For the
latter the boundary value problem in is not well posed9. Tricomi's boundary value problem10

is the proper formulation in it is different from prescribing an arc = const in the supersonic
part of the Rheograph .

We propose a different way to formulate the problem in .This is possible if we restrict ourself
to obtain some solution with a resulting closed arc  = const and not with a prescribed one.

First, we omit the change of sign in the first of equations (8). We take the negative sign for both
half-planes , thus having an elliptic system for the subsonic and the supersonic Rheo-
graph . We now define a boundary value problem for this linear, elliptic system, as sketched
in Fig. 2a. It is well posed and we assume to have a method to obtain a solution. This solution
will, locally, be one of the correct mixed type system (8) in region E1 where , but it is a
fictitious one in E2 for , because real compressible flow requires solution of the hyperbolic
part of (8) with the positive sign for . The solution in E2 has here the purpose to provide a
reasonable solution in E1 with sonic line data

This can be achieved also with some modification of the fictitious elliptic system in E2: The co-
efficient can be changed in some prescribed way, as long as it stays real and positive in E2.
One possibility is taking simply
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Figure 1-4. Elliptic Continuation Principle

which would result in a Cauchy-Riemann system in E2. In this case, the part in E2 of the elliptic
solution can then easily be described analytically if the resulting data at are ex-
panded in terms of a harmonic analysis.

There is also a physical interpretation for this artificial solution in the flow plane x, y if in E2
is reinterpreted

and KE takes the value :

The solution of the elliptic system in E2 represents an example of "supersonic incompressible
flow" with critical constant density , embedded into the subsonic compressible solution ob-
tained in E1, see Fig. 2b. Streamlines, and most important, the streamline
defining our flow boundary for this fictitious flow, are integrated by use of (16) with the velocity
variables qE, , and . The whole solution in E1 + E2 results in a flow with density obeying
isentropic flow relations (2) only up to sonic velocity, beyond it density is frozen to the critical
value. This interpretation led to a design method11 which is not restricted to two-dimensional
flow, results will be presented later.

We return now to our problem in the plane . We still have to solve the equations for the real
supersonic part of the flow, represented by the hyperbolic system (8) with positive sign and valid
in the half plane . We choose the characteristic form of this system as outlined in (13) -
(15). With the given data along the -axis in the given interval AB we can solve this in-
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itial value problem at the sonic line with the method of characteristics. Although well known
and used for many practical problems, we would like to stress the fact that we solve the system
in the characteristic triangle ABC (Fig. 3 a) by calculating downstream along characteristics

, and upstream along characteristics , with defined in (13). Starting at AB
we proceed toward C, the method therefore being a marching procedure normal to the flow di-
rection, from the sonic line to a surface streamline yet to be determined. This concept is, in prin-
ciple, also used in a procedure to calculate three-dimensional flow fields12,13. A line

is found in triangle ABC (it is different from the prescribed boundary in E2!)
and if it does not intersect one of the characteristics . and . more than once, then
its integration (16) in the physical plane, see Fig. 3b, will give a new streamline arc AB and,
along it, a velocity and pressure distribution. We use only the part between this streamline and
the sonic line for our flow example and call this flow field H1.

We go back now to our all-elliptic solution E1 + E2, Fig. 2b, and replace the part E2 and also the
surface streamline arc AB by the solution H1 and its new arc AB of Fig. 3 b. This gives us a
mixed subsonic - supersonic flow field which is a solution of the linear mixed system (8) in the
hodograph plane, Fig. 4a, but also one of the nonlinear mixed system (3), or equations (4), in
the physical plane, Fig. 4b. It can be shown, that the new arc AB of H1 fits smoothly into the E1
subsonic boundary, streamline curvature across any point on the sonic line is continuous.

We have outlined a method to obtain solutions for transonic flow, to be applied mainly to sub-
sonic flows with embedded local supersonic regions. Applications to flows with predominantly
supersonic flow and embedded subsonic regions involve the treatment of bow and tail shock
waves, results have been obtained for airfoil flow with sonic or slightly supersonic freestream
conditions only in special cases where analytical solutions of the near sonic equations (19) were
applicable. An example will be illustrated later, to show transition from the problem of supercri-
tical airfoil flow with subsonic freestream conditions, to sonic and slightly supersonic
freestream conditions. However, supercritical flow is our main concern here, and more precise-
ly, the use of the idea outlined for design of such flows which are shock-free.

3.2 The Rheograph structure of supercritical airfoil flow
The structure of supercritical airfoil flow is well known and needs no explanation here. Howe-
ver, some details are treated here shortly because they are of consequence for the practical indi-
rect design method which will be outlined later.

We know from incompressible flow past lifting airfoils, that the isotachs in the flow field near
the pressure (lower) surface exhibit a saddlepoint. This is the result of locally contracting stre-
amlines due to the far field-effective circulation and the near field-effective body thickness. For
compressible flow including supercritical conditions with or without a recompression shock,
this is equally true, lines of constant local Mach number form a saddlepoint N below the lifting
airfoil, see Fig. 5 a. This point is of interest for the mapping of a, say, given result of airfoil flow
into our Rheograph plane , because we want to know the principal structure of the boundary
conditions for such flows in order to design new examples. The airfoil image in for shock-
free flow shows two complications in view of formulating a closed elliptic boundary value prob-
tem according to the first step of our design procedure:

First, the stagnation point of the airfoil is mapped into . Second, a part of the flow-
field obviously covers the plane , as indicated by the loop in the airfoil image. The structure
of the field image has to be completed now with the mapping of the aforementioned saddlepoint
N, defined by . A second Riemann sheet provides the second deck of , it is, connec-
ted with the basic deck along a cut from the airfoil mapping intersection to the point N, forming
a branchpoint in the Rheograph .
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Figure 5. Saddlepoint, lift coefficient and Rheographs

A detailed description of the mathematical structure of these flow properties has been given in14.
In order to arrive at a single-sheeted boundary value problem of closed, finite structure we per-
form now two mappings (9): first the stagnation point S is moved into a finite domain with the
mapping

Another mapping unwraps the loop of the airfoil image and we obtain a single sheeted domain
by

with c an arbitraty scaling constant. The airfoil image maps in into a closed curve including
the stagnation point S as illustrated in Fig. 5 c. The aforementioned saddlepoint maps into the
origin, the sonic line into a Cassini curve or outer lemniscate with half axes b/a. The ratio b/a is
a function of the local Mach number MN in the saddlepoint:

The value MN is related to the Mach number at infinity in a similar way as the velocities in
the saddlepoint and at infinity for an incompressible flow example past a Joukowsky airfoil or
a circular cylinder with circulation. These latter examples are known analytically and from these
we arrive at the ratio  as a function of the lift coefficient CL
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with a constant A. The circular cylinder example gives at least an idea about the magnitude of A:

These relations invite to be checked on airfoil flow examples. We have a possibility to do this
with existing results for hodograph supercritical airfoil design examples by Nieuwland15,
Boerstoel14, or by Garabedian and Korn16. Some of these authors' designs are evaluated in Fig.
6, we see that the given relations (33), (34) are fulfilled satisfactorily for not too large cL. We
conclude that for given (b/a) in (32) and for given obviously a certain band of cL is possible.
We stress this fact because we will later use an electric analog flow tool which will work with
devices designed for fixed b/a where the given relations and the diagram Fig. 6 provides possible
lift coefficients .

Figure 6. Mach number ratio vs. lift coefficient

3.3 Free stream singularities in the Rheograph plane

We further investigate the structure of supercritical flow in our working plane . With the map-
ping of the airfoil into a closed curve as sketched in Fig. 5c. the domain enclosed is the mapping
of the whole flow. Infinity in the physical plane with maps into a point I, where
the solution of system (10) has a singularity. It has the structure
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The first term is a dipole, with the axis defined by the complex coefficient A. The second term
is representing circulation, with B an imaginary coefficient. For nonlifting flow B vanishes and,
in the case of a symmetrical airfoil, I and N coincide, , the airfoil mapping is symmet-
rical to the vertical axis of . For lifting airfoil flow the free stream singularity I is situated bet-
ween saddlepoint N and the sonic line M = 1, see Fig. 7 a. For higher subsonic Mach numbers

, I moves toward the sonic line and, with cL fixed, MN therefore has to be higher too. This
results in a smaller "waist" b/a(32), as sketched in Fig. 7 b. Finally, arriving at sonic freestream
conditions, the waist reduces to zero, Fig. 7c. This limiting case of airfoil flow with is
already beyond the relations (32) -(35) for supercritical conditions. Nevertheless, it is an inte-
resting topic to study the change of hodograph structures if , arriving from .

Figure 7. Rheograph  for freestream conditions

Airfoils with round leading edge have a stagnation point, which results in the fact, that the airfoil
image in includes the mapped stagnation point S , see Fig. 5c, or for sonic free stream con-
ditions, Fig. 8a. There are analytical results of the near sonic equations (19) for cusped
airfoils3,5,17 in sonic flow, with a sharp leading edge in smooth entry conditions therefore having
no stagnation point. The airfoil contour wetted by subsonic flow maps into a region around the
free stream singularity in I*, see Fig. 8b. This singularity is different from the subsonic far field
solution (35), the transition from one to the other involves far field influence of the tail shock
wave, similar to the transition from to sonic free stream involving the far field of a deta-
ched bow wave. The latter problem is solved analytically18 with use of the transonic shock polar
mapped into the near sonic Rheograph Fig. 8c.

We give some detailed illustrations for the aforementioned analytical results of cusped airfoil
flow in Figures 9 -11 although their value for practical flows is limited. On the other hand, these
results represent educational examples for transonic flow phenomena, where the problem is sol-
ved for the subsonic part first, with the supersonic part either given analytically together with
the subsonic results, or being calculated starting at suitable initial conditions provided by the
subsonic solution.
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Figure 8. Rheograph  for freestream conditions

Figure 9. Cusped lifting airfoil in sonic freestream

In Fig. 9 the cusped airfoil and its geometry formula is drawn. The sonic free-stream has
a certain angle of attack, , which leads to smooth entry conditions, with , but also the local
pressure on the airfoil, lift and drag, functions of the camber/thickness ratio ω / τ, see Fig. 10 a,
b. This analytical result is a generalization of Guderley's cusp, where ω/τ = 0, a detailed descrip-
tion is given in17.

There are results also for supersonic Mach numbers. Fig. 11a shows a configuration of a bow
wave and the local subsonic far field in a similarity flow plane, which illustrates the extent of a
local subsonic region for .
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Figure 10. Cusped lifting airfoil: Smooth entry conditions, lift, drag

In terms of airfoil geometry, this extent is illustrated in Fig. 11b for a Guderley cusp. Stand - off
distance of a detached bow wave is obtained, e.g. for a 10% thick airfoil the bow wave attaches
at . The extent of the local subsonic field normal to the flow direction is large, as the
far field solution Fig. 11a indicates. This is important for wind tunnel tests with detached bow
waves, where the tunnel wall should not be reached by the subsonic field. For a 10 % thick Gu-
derley - airfoil, at for instance, the distance from the airfoil to the ends of the subsonic
field is about four times the chord length, while the bow wave stand off distance from the cusp
is only a fifth of the chord length.

Figure 11. Detached bow wave: a) Similarity solution for
b) Cusped airfoil stand-off distance
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